Prediksi Financial Distress Perusahaan Sektor Industri Consumer Cyclical
Abstract
This study attempts to investigate five company performance variables that affect the probability of financial distress in companies in the cyclical consumer sector. Companies have demand patterns that are strongly influenced by the business cycle, and face stiff competition in their own industries, both domestically and globally. On the other hand, the current massive technological developments have disrupted many companies in the cyclical consumer industry sector. Meanwhile, conditions that make it more difficult for companies around the world in general are the arrival of the COVID-19 pandemic that has hit the world since the end of 2019 until now has not ended. This study uses a binary logistic regression analysis technique with a sample of 10 cyclical consumer industrial sector companies during 2017-2021. The research findings show that there are three variables that have a significant negative effect on financial distress, namely: (1) cash flow from operating activity, (2) cash flow from financing activity, and (3) price – earnings ratio. Thus, if these companies can improve the performance of these three variables, they will be able to reduce financial distress. However, efforts to improve these three factors have encountered obstacles due to the arrival of the COVID-19 pandemic since the end of 2019 until now, which has not been completed, and even tends to exacerbate the company's financial difficulties.
References
Antikasari & Djuminah (2017). Memprediksi Financial Distress dengan Binari Logit Regression Perusahaan Telekomunikasi. Jurnal Keuangan dan Perbankan. 21(2): 265 – 275, 2017, Nationally accredited: 040/P/2014, http://jurnal.unmer.ac.id/
Beaver, Correia, dan Mc.Nicholas (2010), Financial Statement Analysis and Prediction of Financial Distress, http://dx.doi.org/10.1561/1400000018, Vol 5, No.2(2010).
Fachrudin, K (2008), Kesulitan keuangan perusahaan dan personal, (pp.2-3), USU Press, http://usupress.usu.ac.id/
Ganti, A (2020), Equity Multiplier, Investopedia, https://www.investopedia.com/, (diakses: 5 Mei 2022)
Hayes, A (2020), Debt Signaling, Investopedia, https://www.investopedia.com/, (diakses: 5 Mei 2022)
Hidayat, dan Meiranto (2014), Prediksi financial distress perusahaan manufaktur di Indonesia, Diponogoro Journal of Accounting, Vol.3, No.3, tahun 2014, halaman 1-11, ISSN (Online):2337-3806, http://ejournal-s1.undip.ac.id/
Lin, Lee & Gibb (2008), Operational restructuring: reviving an ailing business, Management Decision, Vol.46 No.4,2008, pp.539-552, Emerald Group Pblishing Limited, Doi 10.1108/002517/00517408108665049.
May, E (2020), Meneropong peluang sektor industri yang terdampak Corona, Investing.com, https://www.investing.com/ (diakses: 20 April 2022)
Murphy. B (2022), Cash flow from financing activity, Investopedia, https://www.investopedia.com/, (diakses: 3 Mei 2022)
Peraturan Otoritas Jasa Keuangan, No.76/POJK.07/2016. Tentang Peningkatan Literasi dan Inklusi Keuangan di Sektor Jasa Keuangan bagi konsumendan/atau Masyarakat.
Platt & Platt (2002), Predicting corporate financial distress: Reflections on choice-based sample bias, Journal of Economic and Finance, Vol.26, No.2 (2002), https://www.researchgate.net/
Ross, Westerfield, Jordan, (2019), Fundamentals of CORPORATE FINANCE, McGrowHill Education, Twelfth Edition, ISBN 978-1-259-91895-7, MHID 1-259-91895-5
Schemuck (2013), Financial distress and Corporate turnaround an empirical analysis of the Automotive supplier industry,(p.26 – 28), Springer Fachmedien Wiesbaden 2013, ISBN 978-3-658-01907-5 DOI 10.1007/97/978-3-658-01908-2
Sukamulja (2017), Pengantar Pemodelan Keuangan dan Analisis Pasar Modal, Ed.1, penerbit: Andi Yogyakarta, 2017.
Sun & Li (2009), Financial distress early warning based on group decision making, Computers & Operations Research 36 (2009) 885 – 906, www.elsevier.com/ 0305-0548/2007 Elsevier Ltd. doi:10.1016/j.cor.2007.11.005
Tandelilin (2018), Pasar Modal: Manajemen Portofolio dan Investasi, (p.377 – 380), Penerrbit Kanisius Jogyakarta.
Tuovila, A (2022), Cash flow from operating activity, Investopedia, https://www.investopedia.com/, (diakses: 3 Mei 2022);
Wulandari, Faruk, Doven, Budayanra (2017), Penerapan metoda regresi logistic biner untuk mengetahui determinan kesiapsiagaan rumah tangga dalam menghadapi bencana alam, Seminar nasional official statistics 2019: pengembangan official statistics dalam mendukung implementasi SDG’s, Hal: 379 – 389.
Xu, Zhao, & Bao (2015), Study on early warning of enterprise financial distress – Based on partial least-squares logistic regression, Acta Oeconomica, Vol.65 (52), pp.3-16(2015), 0001-6373/$20,00 @ 2015 Akademial Kiado, Budapest, Doi: 10.1556/032.65.2015.S2.2
Zhafirah, dan Majidah (2019), Analisis determinan financial distress (Studi emperis pada perusahaan subsector tekstil dan Garmen periode 2013 – 2017), Jurnal reset akuntansi dan keuangan Vol.7, No.1, 2019. ISSN:2541-061. Doi:10.17509/jrak.v7il.15497. Published by Jurnal reset akuntansi dan keuangan. Program studi Akuntansi, FPEB-UPI.